integration of math and science via centroids, The
Cheng-Shyong Lee
References
Clemens, S. R. (1973). Fixed point theorems in Euclidean geometry. Mathematics Teacher, April, 324-330.
Coxeter, H. S. M. (1989). Affine geometry: Barycentric coordinates. In Introduction to geometry (pp. 216-221). New York: John Wiley and Sons.
Coxeter, H. S. M., & Greitzer, S. L. (1967). Points and lines connected with a triangle: Ceva’s theorem; Collinearity and occurrence: Menelaus’s theorem. In
I. Niven (Ed.), Geometry revisited (pp. 4-5, 66-67). Washington, DC: MAA.
Dodge, C. W., & Mar dan, S. R. (independently). (1979). Comments on problem 414. Crux Math., 5, 304-306.
Eves, H. (1969). Modem elementary geometry: The theorems of Menelaus and Ceva In Fuals of geometry (60-70). Boston: Allyn & Bacon.
Klamkin, M. S., & Liu, A. (1992). Simultaneous generalizations of the theorems of Ceva and Menelaus. Mathematics Magazine, 65(1), 48-52.
Kimberling, C. (1994). Central points and central lines in the plane of a triangle. Mathematics Magazine, 67(3), 163-187.
Lipman, J. (1960). A generalization of Ceva’s theorem. Amer Math Monthly 67, 162-163. Pedoe, D. (1977). The theorems of Ceva and Menelaus. Crux Math. 3, 2-4.
Yaglom, I. M. (1968). Geometric transformations II. Random House: New York.
Editor’s Note: Cheng-Shyong Lee’s postal address is 23, Aly. 6, In. 136, Sec. 4, Roosevelt Rd., Taipei (100), Taiwan.
Cheng-Shyong Lee
National Taipei Teachers College, Taipei, Taiwan
Copyright School Science and Mathematics Association, Incorporated Apr 1997
Provided by ProQuest Information and Learning Company. All rights Reserved