Cells Regenerate Injured Nerves

Using brain cells from rats, scientists at The Johns Hopkins University School of Medicine (720 Rutland Ave., Baltimore, MD 21205-2196; Tel: 410/955-5000; Website: infonet.welch.jhu.edu) and the University of Hamburg have manipulated a molecular “stop sign” so that the injured nerve cells regenerate. While their findings are far from application in people, the prospects for eventually being able to repair spinal cord injury are brighter, they say.

“Four thousand years ago, physicians wrote that spinal cord injury was untreatable, and unfortunately it’s much the same today,” says Ronald L. Schnaar, professor of pharmacology and of neuroscience at Hopkins. “But the basic-science framework for improving this situation is quickly emerging.”

In adult mammals, including humans, molecular signals carefully control the number of contacts nerve cells make by inhibiting new connections. When the brain or spinal cord has been damaged, the goal is to neutralize those inhibitors so that the long tentacles of nerve cells, the axons, might reestablish their broken connections.

Of the “stop signs” identified so far, Schnaar’s team focused on MAG, or myelin-associated glycoprotein, which is part of the myelin wrapping that insulates all nerve cells. Understanding how the newly identified molecules responsible for MAG’s inhibitory effect-called gangliosides-interact with MAG to send the “stop” signal to the nerve may lead one day to potential treatments, say the scientists

The research team reports identifying gangliosides involved in the ability of MAG to prevent injured nerve cells from connecting to other nerves or muscles. By keeping the chemicals from interacting with the inhibitor, the researchers were able to stimulate damaged nerve cells to regenerate in laboratory dishes. Their report is in the June 11 issue of the Proceedings of the National Academy of Sciences.

In experiments with rat and mouse cells, Hopkins postdoctoral researcher Alka Vyas tested four ways of stopping MAG and the gangliosides from interacting: destroying part of the ganglioside where MAG usually attaches, limiting the amount of the gangliosides made by the cells, using antibodies to block MAG or using antibodies to block the gangliosides. The research team now is focused on determining exactly how the gangliosides and MAG work together to stop nerve regeneration.

“In the central nervous system, once an axon is interrupted in some way, through disease or injury, generally it’s stopped dead in its tracks, but in the rest of the body, damaged axons can re- grow,” says Schnaar. “To make headway in treating brain and spinal cord injury, we need to attack this problem from a number of angles, and our studies have provided an additional target for intervention.”

COPYRIGHT 2002 Business Communications Company, Inc.

COPYRIGHT 2002 Gale Group

You May Also Like

Complement’s Role in Cardiovascular Disease

Complement’s Role in Cardiovascular Disease – Brief Article Researchers from Alexion Pharmaceuticals, Inc. (25 Science Park, New Haven, C…

VACCINES AND ANTI-INFECTIVES Protection Against Rodent Malaria

VACCINES AND ANTI-INFECTIVES Protection Against Rodent Malaria An experimental peptide, based on CEL-SCI Corp.’s (8229 Boone Blvd., Suite…

Apligraf Heals Foot Ulcers

Apligraf Heals Foot Ulcers Organogenesis (150 Dan Rd., Canton, MA 02021; Tel: 617/575-0775, Fax: 617/575- 0440, Website: organogenesis.co…

Oral Therapy for Stomach Cancer

Oral Therapy for Stomach Cancer Researchers, led by Carlo Croce, professor and chair of microbiology and immunology at Jefferson Medical …